Deactivation performed! Your visits to this website will no longer be collected by the web analytics. Please note that the Matomo deactivation cookie of this website will also be deleted if you remove the cookies stored in your browser. In addition, if you use a different computer or a different web browser, you will need to complete the deactivation procedure again.

  Your visit to this website is not currently collected by Matomo web analytics. Check this box to opt-in.
X

Analytical Prototype Functions for Flux Linkage Approximation in Synchronous Machines

Physically motivated and analytical prototype functions are proposed to approximate the nonlinear flux linkages of nonlinear synchronous machines (SMs) in general; and reluctance synchronous machines (RSMs) and interior permanent magnet synchronous machines (IPMSMs) in particular.

Such analytical functions obviate the need of huge lookup tables (LUTs) and are beneficial for optimal operation management and nonlinear control of such machines. The proposed flux linkage prototype functions are capable of mimicking the nonlinear self-axis and cross-coupling saturation effects of SMs. Moreover, the differentiable prototype functions allow to easily derive analytical expressions for the differential inductances by simple differentiation of the analytical flux linkage prototype functions. In total, two types of flux linkage prototype functions are developed.

The first flux linkage approximation is rather simple and obeys the energy conservation rule for “symmetric” flux linkages of RSMs. With the gained knowledge, the second type of prototype functions is derived in order to achieve approximation flexibility necessary for SMs with permanent (or electrical) excitation with “unsymmetric” flux linkages due to the excitation offset. All proposed flux linkage prototype functions are continuously differentiable, obey the energy conservation rule and, as fitting results show, achieve a (very) high approximation accuracy over the whole operation range.

Read more details in the published article.